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Systematic drift experienced by a point vortex in two-dimensional turbulence

Pierre-Henri Chavanis
Ecole Normale Supe´rieure de Lyon, 46 Alle´e d’Italie, 69364 Lyon, France

~Received 9 May 1997; revised manuscript received 30 March 1998!

Using a linear response theory, we show that a point vortex in two-dimensional turbulence experiences a
systematic drift superposed to its mean-field velocity. Taking this result into account, we derive a Fokker-
Planck equation for the evolution of its distribution function and make the link with a maximum entropy
production principle@R. Robert and J. Sommeria, Phys. Rev. Lett.69, 2776 ~1992!#. We also discuss an
analogy with stellar systems@P. H. Chavanis, J. Sommeria, and R. Robert, Astrophys. J.471, 385 ~1996!#; in
particular, thesystematic driftof the vortex is the counterpart of thedynamical frictionexperienced by a star
due to close encounters@S. Chandrasekhar, Rev. Mod. Phys.20 ~3! ~1949!; H. E. Kandrup, Astrophys. Space
Sci. 97, 435 ~1983!#. @S1063-651X~98!51507-3#

PACS number~s!: 47.32.Cc, 05.40.1j, 47.10.1g, 98.10.1z
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It is often useful in two-dimensional turbulence to a
proximate a continuous field of vorticity by a cloud of poi
vorticesv(r ,t)5( ig id„r2r i(t)… whereg i is the circulation
of vortex i. The main interest is that such a system is d
scribed by a Hamiltonian@1# H5( i , jg ig jW(r i ,r j ) ~where
W is the Green function of the domainD! and can be studied
by rather ordinary statistical mechanics. This was first c
sidered by Onsager@2#, who showed qualitatively the exis
tence of equilibrium states with negative temperatures
which the vortices cluster. He could therefore explain
occurrence of large scale vortices~or ‘‘supervortices’’! often
observed in Nature. His work was pursued by Joyce
Montgomery @3# in a mean-field approximation. They de
rived in particular a Maxwell-Boltzmann statistics for th
distribution of point vortices at equilibrium.

We are rather interested here in the relaxation towa
equilibrium. To that purpose, we wish to derive a stocha
Langevin equation describing the motion of a test vor
traveling in a ‘‘sea’’ of field vortices. To a first approxima
tion, the test vortex is driven by the smooth mean-field
locity induced by the rest of the system. It is also subjec
to rapid fluctuations arising from the departure to the me
field. Furthermore, we show that it must experience a s
tematic drift. Indeed, as it travels among the sea of vortic
it alters their distribution; in response, the system exert
back reaction that modifies its initial trajectory. This is t
physical reason for its drift. At equilibrium, the drift balanc
the scattering and maintains nontrivial density distributio

There is a strong analogy between two-dimensional~2D!
vortices and stellar systems@4#. In this analogy, the system
atic drift of a point vortex is the counterpart of the dynamic
friction experienced by a star. This dynamic friction has be
calculated by Kandrup@5# in a mean-field approach, using
linear response theory. We adapt his procedure here to
case of point vortices.

Consider a collection ofN point vortices interacting
through the potentialW. We shall focus on the situatio
when the number of point vortices is very largeN→` but
the total energy remains finite~this impliesg;1/N→0!. In
this ~mean-field! limit, the existence of an equilibrium stat
is well established@6#. The N-particle distribution function
meq($r k%) can be approximated by a product ofN one-
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particle distribution functionsPk
eq, each of which at equilib-

rium @3# with the same inverse temperaturebeq:

meq~$r k%!5)
k51

N

Pk
eq~r k!5)

k51

N

Ake
2beqgkceq~rk!. ~1!

In the Boltzmann factor, the stream functionceq, determined
in the self-consistent-field approximation, plays the role
an interaction potential. Therefore, the system behaves
an ‘‘ideal’’ vortex plasma where the analog of the Deb
sphere is the supervortex itself~of size uDu!.

The introduction of an additional point vortex~referred to
as a ‘‘test vortex’’! will modify this equilibrium state. The
distribution function becomes

m~$r k%,t !5meq~$r k%!1m8~$r k%,t !, ~2!

where the perturbationm8($r k%,t) reflects the influence o
the test vortex on its neighbors~just like in a polarization
process!. The Hamiltonian of the system can be split in tw
terms:

H5Heq1H int5(
i , j

g ig jW~r i ,r j !1(
i 51

N

g ig0W~r i ,r0!

~3!

and theN-particle distribution functionm($r k%,t) satisfies
the Liouville equation:

]m

]t
1(

i 51

N S (
j Þ i

g jV~ j→ i !1g0V~0→ i ! D ]m

]r i
50, ~4!

where

V~ j→ i !52z3
]W~r j ,r i !

]r i
~5!

is the velocity created by a point vortex~of unit circulation!
located inr j on a point vortex located inr i . In an infinite
domain,Ws(r j ,r i)52(1/2p)lnur j2r i u, so that
R1199 © 1998 The American Physical Society
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Vs~ j→ i !52
1

2p
z3

r j2r i

ur j2r i u2

diverges like 1/r at small distances.
Substituting Eq.~2! into Eq. ~4!, we obtain the evolution

equation of the perturbationm8:

]m8

]t
1Lm85beq(

i 51

N

V ig i

]ceq

]r
~r i !meq~$r k%!, ~6!

where

L[(
i 51

N

V i
]

]r i
~7!

is a Liouville operator andV i5( j Þ ig jV( j→ i )1g0V(0
→ i ) denotes the total velocity of vortexi. This equation can
be solved formally with the Greenian

G~ t,t8![expH 2E
t8

t

L~t!dtJ . ~8!

If t50 is the time at which the test vortex is introduced
the system, we havem8(t50)50. One then finds that

m8~ t !5beqE
0

t

dtG~ t,t2t!(
i 51

N

V ig i

]ceq

]r
~r i !meq~$r k%!.

~9!

The average velocity of the test vortex is expressed
terms of the distribution functionm of the field vortices by

^V0&5E )
k51

N

d2r kV
0m~$r k%,t !, ~10!

where V05( i 51
N g iV( i→0). Substituting the formal resul

~9! into Eq. ~10!, one obtains

^V0&5E )
k51

N

d2r kV
0meq~$r k%!

1beqE )
k51

N

d2r kV
0

3E
0

t

dtG~ t,t2t!

3(
i 51

N

Vn
i g i

]ceq

]r n ~r i !meq~$r k%!, ~11!

with summation over repeated greek indices. The two te
arising in this expression have a clear physical meaning.
first term is the mean-field velocitŷV0&eq52z3¹ceq(r0)
created by the unperturbed distribution functionmeq($r k%).
The second term, arising from the perturbationm8, corre-
sponds to the response of the system to the polarization
duced by the presence of the test vortex. Because of this
reaction, the test vortex will experience a systematic d
^V0&drift5^V0&2^V0&eq. Explicating the action of the
Greenian~8!, we obtain
n

s
e

in-
ck

ft

^V0&drift5beqE )
k51

N

d2r k(
i 51

N

g iV~ i→0,t !E
0

t

dt

3(
i 51

N S (
j Þ i

g jVn~ j→ i ,t2t!

1g0Vn~0→ i ,t2t! D
3g i

]ceq

]r n „r i~ t2t!…meq„$r k~ t2t!%…, ~12!

wherer i(t2t) is the position at timet2t of the point vortex
i located atr i(t)5r i at timet. This is obtained by solving the
Kirchhoff-Hamilton equations of motion

dr i

dt
5V i ~13!

betweent and t2t.
The exactexpression of the drift~12! is completely inex-

tricable in the general case. In order to clarify its physic
content, we have to make some approximations. We s
consider, in the calculation of the integrals, that the po
vortices are purely advected by the mean-field veloc
^V&eq. This is reasonable because, whenN→`, the typical
velocity fluctuationsV, of orderg/d;(g/L)N1/2 ~whered is
the average distance between two point vortices andL the
supervortex size!, are much smaller than the mean-field v
locity ^V&eq of order Ng/L. Of course, this approximation
breaks up at scales smaller thand;L/N when the velocity
fluctuations become comparable to the average velocity
that case, we cannot ignore the details of the discrete vo
interactions anymore and a specific treatment is necess
This is, however, beyond the scope of this article. For s
plicity, we shall remain in the mean-field approximatio
~with the aforementioned limitation in mind! and replace the
exact GreenianG by a smoother Greenian̂G&eq constructed
with the averaged Liouville operator ^L&eq

[( i 51
N ^V i&eq(]/]r i). In this approximation the correlation

involving two different vortex pairs vanish, so that

^Vm
0 &drift5beqE )

k51

N

d2r kE
0

t

dt(
i 51

N

g iVm~ i→0,t !

3g0Vn~0→ i ,t2t!g i

]ceq

]r n
„r i~ t2t!…)

k51

N

Pk
eq~r k!

~14!

@Peq
„r k(t2t)…5Peq

„r k(t)…, since Peq5 f (ceq) is constant
over a streamline#. For identical vortices with circulationg,
one obtains

^Vm
0 &drift52Ng3beqE d2r1E

0

t

dtVm
s ~1→0,t !

3Vn
s~1→0,t2t!

]ceq

]r n
„r0~ t2t!…Peq~r0!.

~15!
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Since the integral is dominated by the divergence of
productVmVn when r1→r0 , we have replaced the velocit
~5! by its singular partVs ~neglecting the boundary term! and
made the ‘‘local approximation’’]nc„r1(t2t)….]nc„r0(t
2t)… andPeq(r1).Peq(r0).

The general expression of the drift~15! can be explicated
for particular equilibrium flows. If the equilibrium flow is
unidirectional, such that̂V&eq5^V&eq(y)x, the trajectory of
a point vortex advected by this flow is simplyy(t2t)
5y(t), x(t2t)5x(t)2^V&eq(y)t. Since ]ceq/]r @r0(t
2t)#5]ceq/]y(y0)y, the drift can be written as

^V0&drift52beqg~D¹ceq
0 1Da^V

0&eq! ~16!

whereD5Dxx5Dyy andDa5Dxy52Dyx are the isotropic
and anisotropic parts of the diffusion tensorDmn given by a
Kubo formula

Dmn5Ng2E
0

t

dtE d2r1Vm
s ~1→0,t !Vn

s~1→0,t2t!Peq~r0!.

~17!

These coefficients can be calculated explicitly. For exam

Dyy5
Ng2

4p2 E
0

t

dtE dx1dy1

x12x0

~x12x0!21~y12y0!2 ~ t !

3
x12x0

~x12x0!21~y12y0!2 ~ t2t!Peq~y0!. ~18!

Since the integral is dominated by close interactions, we
make the approximation

^V&eq~y1!2^V&eq~y0!.2S~y0!~y12y0! ~19!

whereS[2]^V&eq/]y is the local shear~equal here to the
vorticity!. Introducing the variablesX[x12x0 , Y[y12y0
we obtain

Dyy5
Ng2

4p2 Peq~y0!E
0

t

dtE dX dY
X

X21Y2

3
X1SYt

~X1SYt!21Y2 . ~20!

The integrations overX andt can be performed easily, lead
ing to

D5
Ng2

2puSu
arctanS uSu

2
t D ln LPeq~y0!, ~21!

where lnL[*0
1`dY/Y. This integral diverges logarithmically

for both small and largeY. There is a similar divergence i
plasma physics and for stellar systems due to the long ra
nature~and the singularity forr→0! of a potential inr 21 or,
here, lnr. As mentioned previously, the divergence at sm
Y accounts for the failure of the mean-field approximation
scaled. This is the main limitation of our theory. This prob
lem could be resolved in principle by a more precise mod
ing of the discrete vortex interactions~in the spirit of a ki-
netic model!. This would amount to a regularization of th
1/Y integrant at scale;d. We shall circumvent this difficulty
e

e,

n

ge

ll
n

l-

by introducing a cutoff at that scale:Ymin;d. The divergence
at largeY is solved by the finite extent of the system;
plasma physics, we would stop the integration atlD ~the
Debye length!, but in our case the interaction is unshield
~except in the geophysical case, where the Rossby ra
plays the same role as the Debye length!. It is therefore natu-
ral to cut the integral atYmax;L, the vortex size. We shal
take accordingly lnL5ln(L/d);ln N. Since the divergence is
weak ~logarithmic!, the result does not depend too much
the precise value of the cutoffs.

A similar calculation gives

Da52
Ng2

4pS
lnS 11

S2t2

4 D ln LPeq~y0!. ~22!

Formulas ~16!, ~21!, and ~22! remain valid in the case
of an axisymmetric equilibrium flow, now withS
5r (d/dr)(^Vu&/r ). They also remain valid in the genera
case, ifu¹cequ does not vary too much along a streamline~S
is then replaced bŷS&, the average shear over a streamlin!.
The drift ~16! has two components: the compone
2beqgD¹ceq

0 associated with the isotropic diffusion and th
component 2beqgDa^V

0&eq due to anisotropic effects
These anisotropic effects are somewhat secondary since
introduce a componentparallel to the mean flow. We shal
therefore keep only the componentperpendicular to the
mean-field velocity, as it is responsible for a real deviation
the vortex:

^V0&drift52beqgD“ceq
0 . ~23!

This drift has the same physical origin as the dynamical fr
tion ^Ffr

0&52Dbeqmv experienced by a star, due to clos
encounters@5#. The expression of the drift coefficientj
5beqgD is an amusing generalization of Einstein’s formu
to the case of point vortices~j corresponds to the ordinar
friction coefficient of colloidal particles or stars@7#!. The
direction of the drift has important physical implication
Consider a point vortex moving at the periphery of the s
tem. Its motion is anticlockwise if we assume positive circ
lation. For negative temperatures, the drift is directed to
left: the vortex isattractedto the center of the domain. O
the contrary, for positive temperatures, the drift is directed
its right: the vortex isrejected toward the boundary. This
reflects the general structure of the equilibrium state@2# and
gives a physical mechanism for the organization of po
vortices at negative temperatures.

We can try now to derive an evolution equation for t
probability P(r0 ,t) of finding the test vortex inr0 at time t.
Having evidenced the existence of a systematic drift, we
write down a stochastic Langevin equation for the motion
the vortex:

Dr05^V0&eqDt2j“ceq
0 Dt1B~Dt !. ~24!

The first term corresponds to the mean-field velocity,
second to the drift, and the third to fluctuations arising fro
the difference between the exact distribution of the vortic
$r i% and their ‘‘smoothed out’’ distributionPeq(r i). We can
now apply the standard techniques of Brownian theory@7#
~the diffusion approximation is well justified since the flu
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tuationsV!^V&eq produce alarge number ofweakdisplace-
ments!. Assuming that the motion of the point vortex is Ma
kovian and that the fluctuationsB(Dt) can be described by
Gaussian stochastic process, we obtain the Fokker-Pla
equation

]P0

]t
1^V0&eq“P05“~D“P01jP0“ceq

0 !. ~25!

The right-hand side is a sum of two terms: the first term i
diffusion due to the erratic motion of the test vortex caus
by the fluctuations; the second term corresponds to the d
Sincej5Dgbeq, we find that the test vortex will ultimately
relax towards the equilibrium distributionPeq of the field
vortices.

If we are not too far from equilibrium, we can try to app
this equation to the evolution of the flow itself. We are l
therefore to introduce the average vorticity^v&5NgP(r ,t)
and replace the equilibrium fieldceq by the fieldc produced
by ^w&. We therefore obtain the coupled system

]^v&
]t

1^V&“^v&5“@D„“^v&1b~ t !g^v&“c…#,

~26!

^v&52Dc. ~27!

The inverse temperature is now a function of time det
mined by the conservation of energy: b(t)
52*D“^v&¹cd2r /*D^v&g(“c)2d2r . Equation ~26! is
consistent with a maximum entropy production princip
~MEPP! originally introduced in the case of continuous vo
ticity fields @8# ~its application to the case of point vortices
straightforward!. This principle~which can be viewed as
variational version of linear thermodynamics! capitalizes on
one’s ignorance and assumes that ‘‘during its evolution
system tends to maximize its rate of entropy product
while satisfying all the constraints imposed by the dyna
ics’’ ~this is a clear extension of the well known principle
ck

a
d
ft.

-

a
n
-

equilibrium thermodynamics!. In this framework, the diffu-
sion term results from the variations of the entropy while t
drift term is necessary to conserve energy~the Einstein rela-
tion is automatically satisfied by this variational principle!.
However, the MEPP does not give the value of the diffus
coefficient that appears as an ill-defined Lagrange multipl
By contrast, our model provides an explicit expression,

D5
gt

8p
ln L^v&, ~28!

where t;2p/^S&, according to Eq.~21!. This shows that
the time of correlation is not short, but of ordertD
5^v&21, the dynamical time. Therefore, anisotropic effec
~due to memory terms! may be important. In that case, th
diffusion current in Eq.~26! is replaced byDW2Daz3W
where W5“^v&1b(t)g^v&“c. However, the physica
relevance of the diffusion current2Daz3W is questionable,
since it acts along the streamlines and does not change
entropyS52*d2r ^v& ln^v&.

It must be kept in mind that the point vortex model is
crude approximation of real flows~with continuous vortic-
ity!. The statistical mechanics of continuous vorticity fiel
has been considered by several authors~see references in
@4#!. The averaging procedure refers to a ‘‘coarse-grainin
of the vorticity field and the equilibrium state belongs to t
Fermi-Dirac statistics. A relaxation equation can be obtain
from the MEPP@8,9# and is similar to Eq.~26! with, how-
ever, two important differences:~i! the drift is nonlinear in
v̄; ~ii ! the diffusion coefficient is much larger, accountin
for a more ‘‘violent’’ relaxation@in the case of point vorti-
ces, the relaxation timetpv;(N/ ln N)tD , estimated from Eq.
~28!, can be very long#. Except for these two~important!
differences, the relaxation equations are morphologica
similar. This may increase interest in the point vortex mod
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